ArcGIS REST Services Directory Login
JSON

Layer: SonomaVegMap_5_1_Delivered (ID: 78)

View In:   ArcGIS Online Map Viewer

Name: SonomaVegMap_5_1_Delivered

Display Field: map_class

Type: Feature Layer

Geometry Type: esriGeometryPolygon

Description: The full datasheet for this product is available here: https://sonomaopenspace.egnyte.com/dl/qOm3JEb3tDClass definitions, as well as a dichotomous key for the map classes, can be found in the Sonoma Vegetation and Habitat Map Key (https://sonomaopenspace.egnyte.com/dl/xObbaG6lF8). The fine scale vegetation and habitat map was created using semi-automated methods that include field work, computer-based machine learning, and manual aerial photo interpretation. The vegetation and habitat map was developed by first creating a lifeform map, an 18-class map that served as a foundation for the fine-scale map. The lifeform map was created using “expert systems” rulesets in Trimble Ecognition. These rulesets combine automated image segmentation (stand delineation) with object based image classification techniques. In contrast with machine learning approaches, expert systems rulesets are developed heuristically based on the knowledge of experienced image analysts. Key data sets used in the expert systems rulesets for lifeform included: orthophotography (’11 and ’13), the LiDAR derived Canopy Height Model (CHM), and other LiDAR derived landscape metrics. After it was produced using Ecognition, the preliminary lifeform map product was manually edited by photo interpreters. Manual editing corrected errors where the automated methods produced incorrect results. Edits were made to correct two types of errors: 1) unsatisfactory polygon (stand) delineations and 2) incorrect polygon labels.The mapping team used the lifeform map as the foundation for the finer scale and more floristically detailed Fine Scale Vegetation and Habitat map. For example, a single polygon mapped in the lifeform map as forest might be divided into four polygons in the in the fine scale map including redwood forest, Douglas-fir forest, Oregon white oak forest, and bay forest. The fine scale vegetation and habitat map was developed using a semi-automated approach. The approach combines Ecognition segmentation, extensive field data collection, machine learning, manual editing, and expert review. Ecognition segmentation results in a refinement of the lifeform polygons. Field data collection results in a large number of training polygons labeled with their field-validated map class. Machine learning relies on the field collected data as training data and a stack of GIS datasets as predictor variables. The resulting model is used to create automated fine-scale labels countywide. Machine learning algorithms for this project included both Random Forests and Support Vector Machines (SVMs). Machine learning is followed by extensive manual editing, which is used to 1) edit segment (polygon) labels when they are incorrect and 2) edit segment (polygon) shape when necessary.The map classes in the fine scale vegetation and habitat map generally correspond to the alliance level of the National Vegetation Classification, but some map classes - especially riparian vegetation and herbaceous types - correspond to higher levels of the hierarchy (such as group or macrogroup).

Service Item Id: 5492addb582f404f827d7c801758e003

Copyright Text: Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program

Default Visibility: true

MaxRecordCount: 2000

Supported Query Formats: JSON, geoJSON, PBF

Min Scale: 0

Max Scale: 0

Supports Advanced Queries: true

Supports Statistics: true

Can Scale Symbols: false

Use Standardized Queries: true

Supports ValidateSQL: true

Supports Calculate: true

Extent:
Drawing Info: Advanced Query Capabilities:
HasZ: false

HasM: false

Has Attachments: false

HTML Popup Type: esriServerHTMLPopupTypeAsHTMLText

Type ID Field: lf_forest

Fields: Types:
Capabilities: Query

Sync Can Return Changes: true

Is Data Versioned: false

Supports Rollback On Failure: true

Supports ApplyEdits With Global Ids: false

Supports ApplyEdits By Upload Id: true

Supports Query With Historic Moment: false

Supports Coordinates Quantization: true

Child Resources:   Field Groups   Contingent Values

Supported Operations:   Query   Query Attachments   Query Analytic   Query Top Features   Query Bins   Append   Validate SQL   Generate Renderer   Return Updates   Metadata   Update Metadata